Hermitian K-theory of the Integers
نویسنده
چکیده
Rognes andWeibel used Voevodsky’s work on the Milnor conjecture to deduce the strong Dwyer-Friedlander form of the Lichtenbaum-Quillen conjecture at the prime 2. In consequence (the 2-completion of) the classifying space for algebraic K-theory of the integers Z[1/2] can be expressed as a fiber product of wellunderstood spaces BO and BGL(F3) over BU . Similar results are now obtained for HermitianK-theory and the classifying spaces of the integral symplectic and orthogonal groups. For the integers Z[1/2], this leads to computations of the 2-primary Hermitian Kgroups and affirmation of the Lichtenbaum-Quillen conjecture in the framework of Hermitian K-theory.
منابع مشابه
Hermitian K-theory and 2-regularity for totally real number fields
We completely determine the 2-primary torsion subgroups of the hermitian K-groups of rings of 2-integers in totally real 2-regular number fields. The result is almost periodic with period 8. Moreover, the 2-regular case is precisely the class of totally real number fields that have homotopy cartesian “Bökstedt square”, relating the K-theory of the 2-integers to that of the fields of real and co...
متن کامل2-universal Hermitian Lattices over Imaginary Quadratic Fields
We call a positive definite integral quadratic form universal if it represents all positive integers. Then Lagrange’s Four Square Theorem means that the sum of four squares is universal. In 1930, Mordell [M] generalized this notion to a 2-universal quadratic form: a positive definite integral quadratic form that represents all binary positive definite integral quadratic forms, and showed that t...
متن کاملRepresentation of Integers by Hermitian Forms
In this paper we consider the representation of (positive) integers by the Hermitian forms Cn, Ck,l and C ∗ k,l.
متن کاملSimple Proofs for Universal Binary Hermitian Lattices
It has been a central problem in the theory of quadratic forms to find integers represented by quadratic forms. The celebrated Four Square Theorem by Lagrange [10] was an outstanding result in this study. Ramanujan generalized this theorem and found 54 positive definite quaternary quadratic forms which represent all positive integers [13]. We call a positive definite quadratic form universal, i...
متن کاملOn the Diophantine Equation x^6+ky^3=z^6+kw^3
Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...
متن کامل